THE UNIVERSITY of ADELAIDE

INGENUITY CHALLENGE 2020

This challenge is the combination of two wellknown problems: the Knapsack Problem and the Travelling Salesperson Problem.

Formally, we define this problem as follows. We are given a set of $\mathbf{n}=\mathbf{4 3 3}$ locations with \mathbf{x} y coordinates, and each location has 10 items. As the starting and end location (with identifier " 1 ") does not have any items, this leaves us with a total of 4320 items.

Each item \mathbf{k} is defined by a profit \mathbf{p}_{k} and a weight $\mathbf{w}_{\mathbf{k}}$. We must visit all locations exactly once, pick up items, and return to the starting city. At each location we can pick up 0 to 10 , but we can only obviously pick up each item once.

Our rented knapsack has a capacity limit of \mathbf{W}, i.e. the total weight of the collected items must not exceed W. In addition, we consider a renting rate \mathbf{R} that we must pay at the end of the treasure hunt, and the maximum and minimum velocities
denoted $\mathbf{v}_{\text {max }}$ and $\mathbf{v}_{\text {min }}$ respectively.
A solution to our challenge is coded in two parts: the tour $\mathrm{X}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ is a vector containing the ordered list of locations 1 to 433, and the picking plan $Z=\left(z_{1}, \ldots, Z_{m}\right)$ is a binary vector
representing the states of items (1 for packed, 0 for unpacked).

What makes this problem challenging is that our speed changes according to the knapsack weight: our velocity at location x is defined as;
$\mathbf{v}_{\mathrm{x}}=\mathrm{v}_{\text {max }}-\mathrm{C}^{*} \mathbf{w}_{\mathrm{x}}$
where
$\mathbf{C}=\left(\mathbf{v}_{\text {max }}-\mathbf{V}_{\text {min }}\right) / \mathbf{W}$
is a constant value, and \mathbf{w}_{x} is the weight of the knapsack at city \mathbf{x}.
The total value of items is
$\mathrm{g}(\mathrm{Z})=\sum_{\mathrm{m}} \mathbf{p}_{\mathrm{m}}{ }^{*} \mathbf{z}_{\mathrm{m}}$,
such that
$\sum_{\mathrm{m}} \mathbf{W}_{\mathrm{m}} * \mathbf{z}_{\mathrm{m}} \leq \mathbf{W}$.
The total travel time is
$\mathrm{f}(\mathrm{X}, \mathrm{Z})=\sum_{\mathrm{i}=\mathbf{1}^{\mathrm{n}-1} \mathbf{t}\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{i}+1}\right)+\mathbf{t}\left(\mathbf{x}_{\mathrm{n}}, \mathbf{x}_{1}\right), ~}^{\text {, }}$
where
$\mathrm{t}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right)=\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}\right) / \mathrm{v}_{\mathrm{x}_{\mathrm{i}}}$
is the travel time from x_{i} to x_{i+1}, d is the rounded-up ("ceil") Euclidean distance between x_{i}, and x_{i+1}.

Our objective is to maximise our profit, which is the total profit of all items minus the travel time multiplied with the renting rate:
$F(X, Z)=g(Z)-f(X, Z) * R$.
To help you get started, we provide code in Java, C\# and Matlab.

To submit solutions, you will need to create files containing the following information as comma-separated values in square brackets: the permutation of the cities in the first line (note: the first city is "1", do not print the " 1 " at the end), and the list of picked items in the second line (the numbering of the items starts with "1"). For example:
[1,5,4,3,2]
[21,313]
which means that only the items with the numbers 21 and 313 are picked, and the sequence of visited cities is $<1,5,4,3,2,1>$. Note that this format can easily be achieved in Java with the function Arrays.toString(...). The Java code provided below also contains a function to produce solutions files for you. For the code written in other languages, we are sure you can create solution files in the correct format.

- Java
- C\#
- Matlab:
- Instance file

