

INGENUITY CHALLENGE 2020

This challenge is the
combination of two well-
known problems: the
Knapsack Problem and the
Travelling Salesperson
Problem.

Formally, we define this problem as
follows. We are given a set
of n=433 locations with x-

y coordinates, and each location
has 10 items. As the starting and end
location (with identifier “1”) does not
have any items, this leaves us with a
total of 4320 items.

Each item k is defined by a
profit pk and a weight wk. We must
visit all locations exactly once, pick up
items, and return to the starting city.
At each location we can pick up 0 to
10, but we can only obviously pick up
each item once.

Our rented knapsack has a capacity
limit of W, i.e. the total weight of the
collected items must not exceed W. In
addition, we consider a renting
rate R that we must pay at the end of
the treasure hunt, and the maximum
and minimum velocities
denoted vmax and vmin respectively.

A solution to our challenge is coded in
two parts: the tour X = (x1, …, xn) is a
vector containing the ordered list of
locations 1 to 433, and the picking
plan Z = (z1, ..., zm) is a binary vector

representing the states of items (1 for
packed, 0 for unpacked).

What makes this problem challenging
is that our speed changes according to
the knapsack weight: our velocity at
location x is defined as;

vx = vmax - C * wx

where

C = (vmax-vmin)/W

is a constant value, and wx is the
weight of the knapsack at city x.

The total value of items is

g(Z) = ∑m pm * zm,

such that

∑m wm * zm ≤ W.

The total travel time is

f(X, Z) = ∑i=1
n-1 t(xi, xi+1) + t(xn, x1),

where

t(xi, xi+1) = d(xi, xi+1) / vx_i

is the travel time from xi to xi+1, d is
the rounded-up (“ceil”) Euclidean
distance between xi, and xi+1.

Our objective is to maximise our
profit, which is the total profit of all
items minus the travel time multiplied
with the renting rate:

F(X, Z) = g(Z) - f(X, Z) * R.

To help you get started, we provide
code in Java, C# and Matlab.

To submit solutions, you will need to
create files containing the following
information as comma-separated
values in square brackets: the
permutation of the cities in the first
line (note: the first city is "1", do not
print the "1" at the end), and the list of
picked items in the second line (the
numbering of the items starts with
"1"). For example:

 [1,5,4,3,2]

 [21,313]

which means that only the items with
the numbers 21 and 313 are picked,
and the sequence of visited cities is
<1,5,4,3,2,1>. Note that this format can
easily be achieved in Java with the
function Arrays.toString(...). The Java
code provided below also contains a
function to produce solutions files for
you. For the code written in other
languages, we are sure you can create
solution files in the correct format.

 Java

 C#

 Matlab:

 Instance file

https://cs.adelaide.edu.au/~ingenuitychallenge/codes/IngenuityChallengeJava.zip
https://cs.adelaide.edu.au/~ingenuitychallenge/codes/IngenuityChallenge.cs
https://cs.adelaide.edu.au/~ingenuitychallenge/codes/IngenuityChallenge.m
https://cs.adelaide.edu.au/~ingenuitychallenge/codes/IngenuityChallenge.txt

